Discussion of Nason & Smith’s “Reverse Filtering U.S. Inflation with Sticky Professional Forecasts”

Elmar Mertens

Federal Reserve Board

The results presented here do not necessarily represent the views of the Federal Reserve System or the Federal Open Market Committee

Conference on Real-Time Data Analysis, Methods, and Applications, October 2012
First impression

• Neat exercise!

• “Survey observations as Kalman Filters? Even when surveys are not perfect RE?”

• Important topic, straightforward application
AGENDA

1. Reverse Filtered Inflation Trend
2. A Filtered Trend (Mertens 2012)
3. Further Comments
Builds on two strands of the literature:

- Inflation: Stock & Watson’s UC
- Surveys: Coibion & Gorodnichenko (Mankiw & Reis)

“Can we get estimates without filtering?”

“Are the two models consistent?”
Builds on two strands of the literature:

- Inflation: Stock & Watson’s UC
- Surveys: Coibion & Gorodnichenko (Mankiw & Reis)

“Can we get estimates without filtering?”
(KIND OF YES)

“Are the two models consistent?”
(SEEMS NOT)
UC model of inflation

\[\pi_t = \tau_t + \epsilon_t \]

\[E_t \pi_{t+\infty} = \tau_t = \tau_{t-1} + \eta_t \]

\[\Rightarrow E_t \pi_{t+h} = \tau_t \]
INFLATION AND SURVEY DYNAMICS

UC model of inflation

\[\pi_t = \tau_t + \epsilon_t \]

\[E_t \pi_{t+\infty} = \tau_t = \tau_{t-1} + \eta_t \]

\[\epsilon_t = \rho \epsilon_{t-1} + \nu_t \]

\[\Rightarrow E_t \pi_{t+h} = \tau_t + \rho^h \epsilon_t \]
UC model of inflation

\[\pi_t = \tau_t + \epsilon_t \]

\[E_t \pi_{t+\infty} = \tau_t = \tau_{t-1} + \eta_t \]

\[\epsilon_t = \rho \epsilon_{t-1} + \nu_t \]

\[\Rightarrow E_t \pi_{t+h} = \tau_t + \rho^h \epsilon_t \]

Sticky Survey Forecasts

\[F_t \pi_{t+h} = (1 - \lambda) E_t \pi_{t+h} + \lambda F_{t-1} \pi_{t+h} \]

“Reverse Filtering”:

Use observed \(F_t \pi_{t+h} \) to back out \(\tau_t \)?

(or at least \(E_t \pi_{t+h} \)?)
INFLATION AND SURVEY DYNAMICS
RE and no persistence in inflation gap

UC model of inflation \((\rho = 0)\)

\[
\pi_t = \tau_t + \epsilon_t \\
\tau_t = \tau_{t-1} + \eta_t \\
\epsilon_t, \eta_t \text{ unpredictable} \\
\Rightarrow E_t \pi_{t+h} = \tau_t
\]

Rational Survey Forecasts \((\lambda = 0)\)

\[
F_t \pi_{t+h} = E_t \pi_{t+h}
\]

• Little or no serial correlation in \(\hat{\eta}_t\) and \(\hat{\epsilon}_t\)

• Gap volatility higher since 2000, . . .

• Longer-term forecasts more sensible for \(\tau_t = E_t \pi_t + \infty\)
REVERSE FILTERED TRENDS

blue: CPI, red: $\tau_{1t} = F_t \pi_{t+1}$, black: $\tau_{2t} = \sum_{j=1}^{4} F_t \pi_{t+j}/4$

$\rho = 0, \lambda = 0$
INFLATION AND SURVEY DYNAMICS
RE and no persistence in inflation gap

UC model of inflation \((\rho = 0)\)

\[
\pi_t = \tau_t + \epsilon_t \\
\tau_t = \tau_{t-1} + \eta_t \\
\Rightarrow E_t\pi_{t+h} = \tau_t
\]

\(\epsilon_t, \eta_t\) unpredictable

Rational Survey Forecasts \((\lambda = 0)\)

\[
F_t\pi_{t+h} = E_t\pi_{t+h}
\]

\(\hat{\tau}_t = F_t\pi_{t+1} \text{ or } \hat{\tau}_t = \frac{1}{4} \sum_{j=1}^{4} F_t\pi_{t+j}\)

- Little or no serial correlation in \(\hat{\eta}_t\) and \(\hat{\epsilon}_t\)
- Gap volatility higher since 2000, . . .
- Longer-term forecasts more sensible for \(\tau_t = E_t\pi_{t+\infty}\)
AGENDA

1. Reverse Filtered Inflation Trend

2. A Filtered Trend (Mertens 2012)

3. Further Comments
- Agnostic about unbiasedness, stickiness etc

\[E_t \pi_{t+h} \neq F_t \pi_{t+h} \]

- Surveys errors stationary

\[\pi_{t+h} - F_t \pi_{t+h} \sim I(0) \]

- Surveys and inflation are cointegrated

\[\tau_t = E_t \pi_{t+\infty} = E_t (F_{t+\infty} \pi_{\infty+h}) + \text{const} \]

- Persistent Gaps:

\[A(L) \begin{bmatrix} \pi_t - \tau_t \\ F_t \pi_{t+h} - \tau_t \\ \vdots \end{bmatrix} = e_t \]
INFLATION TRENDS
black: N&S, yellow: COINT w/CPI and SPF, magenta: CPI
INFLATION TRENDS
black: N&S, yellow: COINT w/CPI and SPF, green: COINT w/sur. & inf.
Recap:

- Nason-Smith similar to filtered measures particular when using same data
- Information sets matter: COINT w/long-term surveys is smoother
- Next: COINT using surveys alone is even smoother
INFLATION TRENDS
...green: COINT w/surveys and inflation, red: COINT w/surveys alone
TREND VOLATILITY
“SPF Model” using CPI and SPF Q1-Q4, plus SV in gaps
VOLATILITY OF GAP SHOCKS
clockwise: CPI, SPF Q1, SPF Q3, SPF Q4
GAP PERSISTENCE
posterior distribution of largest eigenvalue
AGENDA

1 Reverse Filtered Inflation Trend

2 A Filtered Trend (Mertens 2012)

3 Further Comments
INFLATION PERSISTENCE

- No significant estimates of persistence (ρ)
- Using same data, Jain (2011) finds persistence for individual respondents (but w/o detrending)

Different results due to detrending or averaging across respondents?
SURVEY STICKINESS

Estimated Stickiness \(\lambda \)
- Estimates differ from CG’s baseline \(\lambda \approx 0.55 \) (GDPD)
- But seem consistent with CG’s CPI results

Should we reconsider robustness of CG ?

Reverse Filters

\[
\hat{\tau}_t = F_t \pi_{t+h} + \frac{\lambda}{1 - \lambda} (F_t - F_{t-1}) \pi_{t+h}
\]

- Evidence of serial correlation in \(\Delta \hat{\tau}_t \).
 But maybe it measures \(\hat{E}_t \pi_{t+h} \) ?
- \(\hat{\tau}_t = E(\tau | \text{survey respondent’s info}) \) need not be martingale under econometricians info set
• Neat exercise!

• Important topic, straightforward application

• Results

① Surveys observations close to filter estimates

② Need better model/estimates to integrate sticky surveys with inflation dynamics
APPENDIX: MERTENS (2012)
COMMON TREND MODEL

Decomposition

\[Y_t = \tau_t + \tilde{y}_t \quad \tilde{y}_t \text{ stationary} \]

\[\lim_{k \to \infty} E_t Y_{t+k} = \tau_t \]

Trend τ_t with Stochastic Volatility

\[\tau_t = \tau_{t-1} + 1 \exp \left(\frac{h_t}{2} \right) \bar{\epsilon}_t \]

\[h_t = h_{t-1} + \sigma_h \xi_t \quad \bar{\epsilon}_t, \xi_t \sim N(0, 1) \]

Gaps \tilde{y}_t

\[A(L) \tilde{y}_t = \bar{\epsilon}_t + \beta \bar{\epsilon}_t \quad \bar{\epsilon}_t \sim N(0, \bar{\Sigma}) \]
Inflation Rates
- PCE, Core PCE, CPI(SA)
- GDP Deflator

Survey Expectations of Inflation
- Michigan: 1-year and 10-year
- Blue Chip, CPI and GDPD: 4-quarter and 5-to-10-year
- SPF, CPI: 4-quarter and 10-year
- Livingston, CPI: 12-month
- “PTR” from FRB Philadelphia and Board of Governors

In the paper, not shown today: Term Structure
- Nominal Treasury yields: 10-, 30-year
- Nine-to-ten-year forward rate (Svensson yield curve)